diff --git a/rhodecode/public/js/mode/stex/index.html b/rhodecode/public/js/mode/stex/index.html --- a/rhodecode/public/js/mode/stex/index.html +++ b/rhodecode/public/js/mode/stex/index.html @@ -20,11 +20,11 @@ \frametitle{Size Lemma for Balanced Trees} \begin{itemize} \item - \begin{assertion}[id=size-lemma,type=lemma] - Let $G=\tup{V,E}$ be a \termref[cd=binary-trees]{balanced binary tree} + \begin{assertion}[id=size-lemma,type=lemma] + Let $G=\tup{V,E}$ be a \termref[cd=binary-trees]{balanced binary tree} of \termref[cd=graph-depth,name=vertex-depth]{depth}$n>i$, then the set $\defeq{\livar{V}i}{\setst{\inset{v}{V}}{\gdepth{v} = i}}$ of - \termref[cd=graphs-intro,name=node]{nodes} at + \termref[cd=graphs-intro,name=node]{nodes} at \termref[cd=graph-depth,name=vertex-depth]{depth} $i$ has \termref[cd=cardinality,name=cardinality]{cardinality} $\power2i$. \end{assertion} @@ -39,7 +39,7 @@ \end{spfcase} \begin{spfcase}{$i>0$} \begin{spfstep}[display=flow] - then $\livar{V}{i-1}$ contains $\power2{i-1}$ vertexes + then $\livar{V}{i-1}$ contains $\power2{i-1}$ vertexes \begin{justification}[method=byIH](IH)\end{justification} \end{spfstep} \begin{spfstep} @@ -57,8 +57,8 @@ \end{spfcase} \end{spfcases} \end{sproof} - \item - \begin{assertion}[id=fbbt,type=corollary] + \item + \begin{assertion}[id=fbbt,type=corollary] A fully balanced tree of depth $d$ has $\power2{d+1}-1$ nodes. \end{assertion} \item @@ -81,7 +81,7 @@ \end{note} \end{module} -%%% Local Variables: +%%% Local Variables: %%% mode: LaTeX %%% TeX-master: "all" %%% End: \end{document}