Files
@ 268c47a1a93d
Branch filter:
Location: kallithea/docs/usage/performance.rst - annotation
268c47a1a93d
5.2 KiB
text/prs.fallenstein.rst
setup: bump webtest minimum version to 2.0.6 to get py3 stdlib support
/usr/lib64/python3.7/http/cookiejar.py:723: in is_third_party
if not domain_match(req_host, reach(request.origin_req_host)):
E AttributeError: '_RequestCookieAdapter' object has no attribute 'origin_req_host'
/usr/lib64/python3.7/http/cookiejar.py:723: in is_third_party
if not domain_match(req_host, reach(request.origin_req_host)):
E AttributeError: '_RequestCookieAdapter' object has no attribute 'origin_req_host'
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 | fa88997aa421 fa88997aa421 fa88997aa421 22a3fa3c4254 fa88997aa421 fa88997aa421 d02c715e2805 d02c715e2805 d02c715e2805 d02c715e2805 d02c715e2805 5d12768a0aa1 d02c715e2805 d02c715e2805 fa88997aa421 d02c715e2805 d02c715e2805 d02c715e2805 6afa528ee30e d02c715e2805 d02c715e2805 fa88997aa421 d02c715e2805 d02c715e2805 d02c715e2805 fb0417c65c64 fb0417c65c64 fb0417c65c64 fb0417c65c64 fb0417c65c64 fb0417c65c64 fb0417c65c64 fb0417c65c64 fb0417c65c64 fa88997aa421 d02c715e2805 d02c715e2805 8b8edfc25856 d02c715e2805 d02c715e2805 d02c715e2805 8b8edfc25856 d02c715e2805 d02c715e2805 d02c715e2805 d02c715e2805 fa88997aa421 d02c715e2805 d02c715e2805 d6942b2b421c d02c715e2805 d02c715e2805 d02c715e2805 d02c715e2805 49c82acd30b2 d02c715e2805 d02c715e2805 d02c715e2805 d02c715e2805 d02c715e2805 d02c715e2805 d02c715e2805 d02c715e2805 d6942b2b421c d02c715e2805 d02c715e2805 d02c715e2805 d6942b2b421c d02c715e2805 d02c715e2805 d6942b2b421c d02c715e2805 d02c715e2805 d79f3505549e 4e6dfdb3fa01 4e6dfdb3fa01 4e6dfdb3fa01 4e6dfdb3fa01 4e6dfdb3fa01 4e6dfdb3fa01 d6942b2b421c 4e6dfdb3fa01 4e6dfdb3fa01 4e6dfdb3fa01 4cd84f4f28fb 4cd84f4f28fb 778f7ae3b6eb d02c715e2805 d02c715e2805 d02c715e2805 61954577a0df 61954577a0df 692dddf298e2 692dddf298e2 61954577a0df 692dddf298e2 692dddf298e2 692dddf298e2 692dddf298e2 61954577a0df 61954577a0df 61954577a0df 61954577a0df 61954577a0df 61954577a0df 61954577a0df 61954577a0df 61954577a0df 61954577a0df 61954577a0df 61954577a0df 61954577a0df 61954577a0df 61954577a0df 692dddf298e2 61954577a0df 61954577a0df 61954577a0df 692dddf298e2 692dddf298e2 692dddf298e2 692dddf298e2 692dddf298e2 692dddf298e2 692dddf298e2 fbbe80e3322b 778f7ae3b6eb | .. _performance:
================================
Optimizing Kallithea performance
================================
When serving a large amount of big repositories, Kallithea can start performing
slower than expected. Because of the demanding nature of handling large amounts
of data from version control systems, here are some tips on how to get the best
performance.
Fast storage
------------
Kallithea is often I/O bound, and hence a fast disk (SSD/SAN) and plenty of RAM
is usually more important than a fast CPU.
Caching
-------
Tweak beaker cache settings in the ini file. The actual effect of that is
questionable.
.. note::
Beaker has no upper bound on cache size and will never drop any caches. For
memory cache, the only option is to regularly restart the worker process.
For file cache, it must be cleaned manually, as described in the `Beaker
documentation <https://beaker.readthedocs.io/en/latest/sessions.html#removing-expired-old-sessions>`_::
find data/cache -type f -mtime +30 -print -exec rm {} \;
Database
--------
SQLite is a good option when having a small load on the system. But due to
locking issues with SQLite, it is not recommended to use it for larger
deployments.
Switching to MySQL or PostgreSQL will result in an immediate performance
increase. A tool like SQLAlchemyGrate_ can be used for migrating to another
database platform.
Horizontal scaling
------------------
Scaling horizontally means running several Kallithea instances and let them
share the load. That can give huge performance benefits when dealing with large
amounts of traffic (many users, CI servers, etc.). Kallithea can be scaled
horizontally on one (recommended) or multiple machines.
It is generally possible to run WSGI applications multithreaded, so that
several HTTP requests are served from the same Python process at once. That can
in principle give better utilization of internal caches and less process
overhead.
One danger of running multithreaded is that program execution becomes much more
complex; programs must be written to consider all combinations of events and
problems might depend on timing and be impossible to reproduce.
Kallithea can't promise to be thread-safe, just like the embedded Mercurial
backend doesn't make any strong promises when used as Kallithea uses it.
Instead, we recommend scaling by using multiple server processes.
Web servers with multiple worker processes (such as ``mod_wsgi`` with the
``WSGIDaemonProcess`` ``processes`` parameter) will work out of the box.
In order to scale horizontally on multiple machines, you need to do the
following:
- Each instance's ``data`` storage needs to be configured to be stored on a
shared disk storage, preferably together with repositories. This ``data``
dir contains template caches, sessions, whoosh index and is used for
task locking (so it is safe across multiple instances). Set the
``cache_dir``, ``index_dir``, ``beaker.cache.data_dir``, ``beaker.cache.lock_dir``
variables in each .ini file to a shared location across Kallithea instances
- If using several Celery instances,
the message broker should be common to all of them (e.g., one
shared RabbitMQ server)
- Load balance using round robin or IP hash, recommended is writing LB rules
that will separate regular user traffic from automated processes like CI
servers or build bots.
Serve static files directly from the web server
-----------------------------------------------
With the default ``static_files`` ini setting, the Kallithea WSGI application
will take care of serving the static files from ``kallithea/public/`` at the
root of the application URL.
The actual serving of the static files is very fast and unlikely to be a
problem in a Kallithea setup - the responses generated by Kallithea from
database and repository content will take significantly more time and
resources.
To serve static files from the web server, use something like this Apache config
snippet::
Alias /images/ /srv/kallithea/kallithea/kallithea/public/images/
Alias /css/ /srv/kallithea/kallithea/kallithea/public/css/
Alias /js/ /srv/kallithea/kallithea/kallithea/public/js/
Alias /codemirror/ /srv/kallithea/kallithea/kallithea/public/codemirror/
Alias /fontello/ /srv/kallithea/kallithea/kallithea/public/fontello/
Then disable serving of static files in the ``.ini`` ``app:main`` section::
static_files = false
If using Kallithea installed as a package, you should be able to find the files
under ``site-packages/kallithea``, either in your Python installation or in your
virtualenv. When upgrading, make sure to update the web server configuration
too if necessary.
It might also be possible to improve performance by configuring the web server
to compress responses (served from static files or generated by Kallithea) when
serving them. That might also imply buffering of responses - that is more
likely to be a problem; large responses (clones or pulls) will have to be fully
processed and spooled to disk or memory before the client will see any
response. See the documentation for your web server.
.. _SQLAlchemyGrate: https://github.com/shazow/sqlalchemygrate
|